
Controls Qualifying Exam 

Sample 
 

 

Instructions: Complete the following five problems worth 20 points each.  No material 

other than a calculator and pen/pencil can be used in the exam.  A passing grade is 

approximately 70 points.  If you do not understand something, make reasonable 

assumptions and state them clearly.  This will be considered in the grading. 

 

Laplace Transform Tables: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem 1: Figure 1 shows the block diagram for a control system whose objective is to 

make an output signal, �, track a human operator’s joystick command, denoted by ����. 
In order to filter out high frequency noise and vibrations from the human operator, the 

human input (����) is passed through a first order filter (known as a “precompensator”) 

before being compared with � and sent to the main PI controller. The control signal 

(output of the main PI controller) is denoted by �, and the plant is represented by a 

second order transfer function as shown. Both the precompensator filter computations 

and PI controller computations are performed on a Renesas microcontroller. 

 

a) Identify all of the components (blocks) in Figure 1 that represent computations 

that occur on the microcontroller (simply draw a dashed line around the set of 

these blocks). 

b) How many sensors are required to implement the proposed control system? 

Which particular signals do these sensors need to measure? 

c) In practice, control systems that are designed in the Laplace domain must 

ultimately be realized in the time domain. Derive a time domain integral 

realization for each of the blocks that you identified in part (a). You may submit 

your answer in one of two ways: 

• Option 1: Construct block diagram representations of each of the blocks 

you identified in (a), where the only elements in the block diagrams are 

gains, integrators, and summation junctions. Your block diagram should 

not include derivatives! 

• Option 2: Write closed-form, time domain expressions for �(�) and 

����,
(�). Your closed-form expressions can include integrals but should 

not include derivatives! 

 

 
Figure 1: Control system (including plant) for problem 1. 

 

 

 

 

 

 

 

 

 

 

 

 



Problem 2: Consider the feedback control system of Figure 2, where the forward path 

consists of a scalar gain, static nonlinearity, and linear mystery plant. The Bode plot of 

the mystery plant is shown in Figure 3, whereas the static nonlinearity is shown 

graphically in Figure 4.  

 

What is the largest value of � for which the linearized closed-loop is stable for all 

linearization points where −3 < �� < 3 (�� represents the value of � around which the 

linearization is performed)? An approximate answer, based on your reading of the graphs, 

will be fine. 

 

 
Figure 2: Block diagram for problem 2. 

 

 
Figure 3: Bode plot for problem 2. 
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Figure 4: Static nonlinearity for problem 2. 
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Problem 3: Figure 5 shows a block diagram for a feedback control system, where a DC 

motor is used to control the position of a robot through an applied voltage, �. The motor 

is approximated with a first order transfer function in Figure 1. The control objective is to 

get the output position, �, to track the setpoint, ����. � represents the velocity of the 

robot. The controller is a filtered proportional plus derivative controller, also known as a 

lead filter. 

 

 
Figure 5: Block diagram for Problem 3. 

 

(a) Derive the transfer function from ���� to � (i.e., derive 
�(�)

����(�)) in terms of the 

symbols in the block diagram. For full credit, your final transfer function should be 

the ratio of a numerator polynomial to a denominator polynomial. If your transfer 

function includes more than one fraction bar, expect to lose a lot of points.  
 

(b) Suppose that we choose ��, ��, and �� all to be positive (�� and �� will be positive 

by their nature, as they are the motor gain and time constant, respectively). 

Furthermore, suppose that we choose the control gains such that 
�� ��� = ��. Under 

the aforementioned assumptions, prove that the closed-loop system is input-output 

stable from ���� to �. Hint: Under the stated assumption, the numerator of the 

controller can be factored as ��(�� + 1). 
 

(c) Suppose that that ����(�) is a unit step input (�(�)). Under the same assumptions as 

part (b), calculate the steady-state value of �(�). If it makes you feel better, you may 

assume all initial conditions are equal to zero – however, they will have no impact on 

the final value of �(�). Note: You do not need to have successfully completed part (b) 

to complete part (c). 

 

  



Problem 4: Consider the following open loop transfer functions as defined in the block 

diagram of Figure 6.  
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For each case, determine whether the system will be inherently stable, conditionally 

stable, or inherently unstable under closed loop control. 

 

 
Figure 6: Open loop transfer function definition. 

 

  



Problem 5: Consider the block diagram representation of a process controller shown in 

Figure 7 below. 

 
Figure 7: Block diagram of a process with three sensor feedback. 

 

 
Figure 8: Equivalent block diagram to that shown in Figure 7. 

Show that the block diagram in Figure 7 can be reduced to the following equivalent 

model shown in Figure 8 and determine the system transfer function ( )sysG s . 

 

 
 

 


