
Ph.D. Qualifying Exam - Fluid Mechanics

Sample Exam 1

1) Consider the boundary layer equations for steady, two-dimensional laminar, incompressible flow

over a flat plate:

ρ
(

uux + vuy) = −Px + µuyy

and

ux + vy = 0

where the first corresponds to the x-momentum equation and the second is the continuity equation.

a) For the case where the pressure gradient Px = 0 within the external inviscid flow, derive the

momentum integral equation:

∂

∂x

∫ δ(x)

0
ρu(U − u)dy = µ

∂u

∂y
|y=0

where δ(x) is the boundary layer thickness at x.

b) Assume a linear boundary layer velocity profile of the general form

u(x, y) = a + by

and impose boundary conditions on u in order to determine the parameters a and b.
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c) Using the profile determined in b), obtain an ordinary differential equation governing δ(x).
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2) Consider unsteady laminar viscous flow within the vertical annular gap shown on the next page.

For the two separate cases described below:

i) Make reasonable assumptions regarding the velocity components and the dependence of these

components on r, θ, and z; based on these assumptions, simplify the three momentum equations

and continuity equation (which should be expressed in polar-cylindrical coordinates – see attached

equation sheets).

ii) Impose appropriate boundary conditions and an initial condition that would allow solution of

each problem. Note, the models derived will be simple enough that analytical solutions could be

obtained. However, do not attempt to solve the models you derive. In both cases, assume

that the fluid is initially at rest.

Case I: The outter cylinder begins rotating (at t = 0) at a constant rotational rate, Ω, while the

inner cylinder remains fixed.

Case II: The inner cyclinder begins translating at speed U (at t = 0) in the positive z-direction

while the outter cylinder remains fixed.
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3) Consider the supersonic flow shown below. As indicated, an oblique shock is created at point A

by a turning corner of angle θ1. The shock created propagates to the upper wall where it reflects

at point B. An upper turning corner having angle θ2 also begins at B. Let M1 = 3, T1 = 300 K,

and p1 = 1 atm, and let θ1 = 14o and θ2 = 10o. Calculate the Mach numbers, temperatures, and

pressures in regions 2 and 3.

1 2 3

M

P

T

1

1

1

θ

θ

1

2

A

B

5



4a) Consider a compressible flow passing through a normal shock. Write down the appropriate

forms of the conservation of energy, linear momentum, and mass across the shock. Express in

terms of the densities, ρ1, ρ2, velocities, u1, u2, pressures, P1, P2, and enthalpies h1, h2, that exist

on each side of the shock. Do not attempt to manipulate these into the normal shock working

equations (involving M1 and M2).

b) Starting with the energy equation for one-dimensional compressible flow, ho = h + 1
2u2, derive

the following working equation for 1-D isentropic compressible flow:

To

T
= 1 +

γ − 1

2
M2

where the subscript o denotes stagnation conditions and where γ = cp/cv. Recall that cp − cv = R

and that sound speed, a =
√

γRT.
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